
Carlos Georges

Nicholas VanDeventer

16 Point Fast Fourier Transform

The Fourier transform is a useful operation in the signal processing space. The transform allows

for a signal to be operated on in the frequency domain which can make certain filtering and

processing operations much more efficient. A time domain signal arrives in time and the

amplitudes represent intensity, however a frequency domain signal arrives in frequency and the

amplitudes represent intensity of the frequencies. The discrete Fourier transform (DFT), is the

comprehensive transform for a number of sample points. The operation is often times redundant

for many values, so researchers developed the fast Fourier transform (FFT) algorithm which is

often regarded as the most important algorithm developed in the last century. Modern day digital

signal processors contain a multitude of large FFT cores capable of processing dense signals

reliably. The FFT is easily implemented in software for a large range of sample points, but is

much slower than a hardware implementation. For the embedded DSP course, we are expected to

implement the algorithm using computer hardware.

Our approach was a very structural one, using principles of hierarchy, abstraction, and

optimization. The 16 point FFT can be broken down into 4 stages of a butterfly operation. The

butterfly operation is the algorithmic method of computing the FFT. The 4 stages consist of 8 2-

point butterfly operations, 4 4-point butterfly operations, 2 8-point butterfly operations, and 1 16-

point butterfly operation.

The butterfly operations require

arithmetic with complex numbers, as the

signals in the frequency domain present

themselves in the complex plane

conveniently. We can simply represent

complex numbers using two registers and

perform the arithmetic with those. Our

approach is a decimation-in-time FFT,

which requires a bit reversal of the input

order to receive the frequency domain

signals in the proper order. The inverse

transform is of interest as well. The

inverse FFT can be computed by using

another forward FFT and passing in the complex conjugate of the output of the first FFT. The

complex conjugate is obtained by simply negating the imaginary part of the complex number.

After the signal passes through a second FFT module, the output is divided by N (16) to return

the original signal. As for the HDL implementation, we followed a “control unit, datapath”

architecture, effectively making a single FFT core. The circuit contains the forward and inverse

modules, input and output registers, and the control unit. The modules require 16 parallel inputs,

and will have 16 parallel outputs, but each I/O is 64 bits and this will require far too many I/O

pins on a physical implementation, so a control unit is used to facilitate serial I/O, significantly

reducing the number of I/O pins. The control unit is a simple FSM that transitions between

filling the SIPO and reading the PISO.

Figure 1: A diagram of the 16 point FFT butterfly operations

Carlos Georges

Nicholas VanDeventer

Testing

Of course, a testbench was developed to properly stimulate and verify the RTL design. The

testbench has 16 real inputs which can be easily modified to test different input sequences. The

simulation then proceeds to display the original input sequence, the frequency domain signal,

and then the output of the inverse transform, which should be the original time domain signal.

The circuit’s functional operation was confirmed with a software implementation (python’s

numpy library). For demonstration purposes, the input sequence is simply the numbers 0-15. The

results were on target but had lost some precision because of the scaling factor. With 64 bits and

4 stages of scaling the most reasonable scaling factor was 27 =128. A smaller scaling factor does

result in a loss of precision, but the testbench does demonstrate the proof of concept.

The above figure shows the same data that will be shown in the testbench, that is, the original

input sequence, the transformed signal, and the signal after passing through the inverse

transform.

Figure 2: Software verification of the input sequence

Testbench results. As we can see, the results are accurate but not extremely precise.

Carlos Georges

Nicholas VanDeventer

Hardware Implementation

The top module was synthesized in the Quartus software. The circuitry is very resource intensive

and the combinational logic has a considerable propagation delay. However, the circuit can

complete the operation in only 16 clock cycles and the data can be read out serially in another 16

cycles. The resources can be optimized by implementing a pipeline structure to reduce the

number of multiplier elements. Although, modern DSPs contain many MAC units, which are

extensively used in this operation, so with more specialized hardware, the design would be less

resource intensive.

The clock period needed to avoid data hazards came out to 107.8 ns. With approximately 32

clock cycles to complete a transform, inverse transform, and read, the whole sequence will take

about 3.45 us.

In this view we see the

connections of the four stages of

butterfly operations as previously

described in the paper. This

circuitry serves as the

combinational logic for the

datapath and contains the

majority of the resources.

Figure 4: Resource utilization

Figure 3: Timing report

Figure 5: RTL view of 16 point butterfly operation

Carlos Georges

Nicholas VanDeventer

The RTL view of the top

module shows all the

components of the core. The

view is a very close

realization of our initial

drawup and works as

expected.

Left we see the RTL views of the input

and output registers.

Finally, we see the internals of the control unit state machine.

Figure 6: RTL view of the top module

Carlos Georges

Nicholas VanDeventer

Conclusion

The project was rigorous and thorough. Our understanding of signals and systems was enhanced

greatly through the research and development of the unit. The project involved many aspects of

computer engineering including the principles of abstraction, signal processing, frequency

transforms, RTL design, processor architecture, and simulation/verification. The process was

comprehensive and informative and we are glad we chose the 16 point FFT for the final project.

It was a strong project to demonstrate the skills we’ve learned in this course and the

prerequisites.

